首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   11篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1965年   1篇
排序方式: 共有54条查询结果,搜索用时 156 毫秒
11.
The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.  相似文献   
12.
EA Ryan  LF Mockros  AM Stern    L Lorand 《Biophysical journal》1999,77(5):2827-2836
We investigated the origins of greater clot rigidity associated with FXIIIa-dependent cross-linking. Fibrin clots were examined in which cross-linking was controlled through the use of two inhibitors: a highly specific active-center-directed synthetic inhibitor of FXIIIa, 1,3-dimethyl-4,5-diphenyl-2[2(oxopropyl)thio]imidazolium trifluoromethylsulfonate, and a patient-derived immunoglobulin directed mainly against the thrombin-activated catalytic A subunits of thrombin-activated FXIII. Cross-linked fibrin chains were identified and quantified by one- and two-dimensional gel electrophoresis and immunostaining with antibodies specific for the alpha- and gamma-chains of fibrin. Gamma-dimers, gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrids were detected. The synthetic inhibitor was highly effective in preventing the production of all cross-linked species. In contrast, the autoimmune antibody of the patient caused primarily an inhibition of alpha-chain cross-linking. Clot rigidities (storage moduli, G') were measured with a cone and plate rheometer and correlated with the distributions of the various cross-linked species found in the clots. Our findings indicate that the FXIIIa-induced dimeric cross-linking of gamma-chains by itself is not sufficient to stiffen the fibrin networks. Instead, the augmentation of clot rigidity was more strongly correlated with the formation of gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrid cross-links. A mechanism is proposed to explain how these cross-linked species may enhance clot rigidity.  相似文献   
13.
14.
Early control of virus replication by the innate immune response is essential to allow time for the generation of a more effective adaptive immune response. As an important component of innate immunity, complement has been shown to be necessary for protection against numerous microbial infections. This study was undertaken to investigate the role of complement in neutralizing influenza virus. Results demonstrated that the classical pathway of complement mediated serum neutralization of influenza virus. Although nonimmune serum neutralized influenza virus, the mechanism of virus neutralization (VN) required antibody, as sera from RAG1-deficient mice lacked VN activity; moreover, purified natural immunoglobulin M (IgM) restored VN activity to antibody-deficient sera. The mechanism of VN by natural IgM and complement was associated with virion aggregation and coating of the viral hemagglutinin receptor; however, viral lysis did not significantly contribute to VN. Additionally, reconstitution of RAG1-deficient mice with natural IgM resulted in delayed morbidity during influenza virus infection. Collectively, these results provide evidence that natural IgM and the early components of the classical pathway of complement work in concert to neutralize influenza virus and that this interaction may have a significant impact on the course of influenza viral pneumonia.  相似文献   
15.
The association of ecological factors and allozymic markers of wild barley,Hordeum spontaneum, with genotypes varying in resistance to 3 cultures of the pathogenErysiphe graminis hordei, which incites the disease powdery mildew of barley, were explored theoretically and practically. The study involved 275 accessions comprising 16 populations largely representing the ecological range ofH. spontaneum in Israel. From earlier studies of allozymic variation and disease resistance it now becomes apparent that genetic polymorphisms for resistance toE. graminis hordei are structured geographically, and are predictable by climatic as well as allozymic variables. Three-variable combinations of temperature and water factors explain significantly 0.32 of the spatial variance in disease resistance between localities. Also, several allozyme genotypes, singly or in combination, are significantly associated with disease resistance. A high correlation was found between the standard deviation of infection types of the culture of the pathogen from Israel, and allozymic polymorphism,P (rs = 0.86, p < 0.001). Consequently, the IsraelH. spontaneum populations, growing in the center of diversity of the species, contain large amounts of unexploited disease resistance polymorphism. These could be effectively screened and utilized for producing resistant barley varieties by using ecological factors and allozymic variants as guidelines.  相似文献   
16.
The plant alkaloids vinblastine and colchicine are known to arrest cells in mitosis by virtue of their binding to spindle protein. These drugs are also capable of binding to microtubule protein and causing these structures to disaggregate into nonfunctional subunits (1, 2). Microtubular structures are thought to be involved in the secretory process of a number of proteins including insulin (7), collagen (4), and thyroid hormone (12). In this report we present our findings on the effects of these two drugs on the synthesis and secretion of interferon in a high producing human foreskin fibroblast strain (FS-4) (11).  相似文献   
17.
Impacts of invasive species on microbial components of wetland ecosystems can reveal insights regarding functional consequences of biological invasions. Nitrogen fixation (acetylene reduction) rates and diversity of nitrogen fixers, determined by genetic fingerprinting (T-RFLP) of the nifH gene, were compared between native and invaded sediments in three systems. Variable responses of nitrogen fixing microbes to invasion by a non-native mussel, Musculista senhousia, and mangrove, Avicennia marina, in Kendall Frost-Northern Wildlife Preserve (Mission Bay) and salt cedar, Tamarisk (Tamarix spp.) in Tijuana Estuary suggest microbes respond to both species- and site-specific influences. Structurally similar invaders (the mangrove and salt cedar) produced different effects on activity and diversity of nitrogen fixers, reflecting distinct environmental contexts. Despite relative robustness of microbial community composition, subtle differences in total diversity or activity of nitrogen fixers reveal that microbes are not immune to impacts of biological invasions, and that functional redundancy of microbial diversity is limited, with significant consequences for functional dynamics of wetlands.  相似文献   
18.
19.
20.
Genetic divergence and gene flow among closely related populations are difficult to measure because mutation rates of most nuclear loci are so low that new mutations have not had sufficient time to appear and become fixed. Microsatellite loci are repeat arrays of simple sequences that have high mutation rates and are abundant in the eukaryotic genome. Large population samples can be screened for variation by using the polymerase chain reaction and polyacrylamide gel electrophoresis to separate alleles. We analyzed 10 microsatellite loci to quantify genetic differentiation and hybridization in three species of North American wolflike canids. We expected to find a pattern of genetic differentiation by distance to exist among wolflike canid populations, because of the finite dispersal distances of individuals. Moreover, we predicted that, because wolflike canids are highly mobile, hybrid zones may be more extensive and show substantial changes in allele frequency, relative to nonhybridizing populations. We demonstrate that wolves and coyotes do not show a pattern of genetic differentiation by distance. Genetic subdivision in coyotes, as measured by theta and Gst, is not significantly different from zero, reflecting persistent gene flow among newly established populations. However, gray wolves show significant subdivision that may be either due to drift in past Ice Age refugia populations or a result of other causes. Finally, in areas where gray wolves and coyotes hybridize, allele frequencies of gray wolves are affected, but those of coyotes are not. Past hybridization between the two species in the south-central United States may account for the origin of the red wolf.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号